Math 3210 Tutorial 7

Introduction to solving Linear Programing problem in Excel:

The use of Solver:

Here the most important tools in solving LP (Linear Programming) is the Solver application. For Excel Office 2007 or above, the Solver can be found in the "Data" section. If you cannot find "Solver" in the tab "Tools", that means you have never used it on your machine before. Then you should add it to your machine. In Excel 2007, you should use the "File" and then "Excel Options" to get to "Add-ins". Then a window called "Add-ins available" pops up. Tick "Solver add-in" and then click the OK button. Then you will have the "Solver" in your "Data".

Adding in Solver in Excel:

A4			1				
4	A	B	C	D	E	F	G
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							

Info

Solution to math 3210 programing assignment

Desktop

Protect Workbook
Control what types of changes people can make to this workbook.

Inspect Workbook

Before publishing this file, be aware that it contains:

- Document properties, printer path, author's name and absolute path
- Hidden rows
- Content that people with disabilities find difficult to read

Versions

(第 Today, 7:55 PM (autosave)

Demonstration of solving a linear programing problem:

Assume we want to solve the following linear programing problem:

$$
\begin{aligned}
& \text { Maximised } z=8 x_{1}+9 x_{2}+5 x_{3} \\
& \text { Subject to }\left\{\begin{array}{c}
x_{1}+x_{2}+2 x_{3} \leq 2 \\
2 x_{1}+3 x_{2}+4 x_{3} \leq 3 \\
6 x_{1}+6 x_{2}+2 x_{3} \leq 8
\end{array}\right.
\end{aligned}
$$

Entering the variables:

The most straight forward way is to reference each variable to a particular cell, enter the variables, the numbers that correspond to matrix A, vector C and the vector b separately.

Here for clarity I suggest that you name your range in the following manners

Range	Names
C3:C5	Variables
K3:K5	Constraints
E3:G6	Amatrix

Setting up the equations for the constraints:

Here we introduce the column $\mathbf{A x}$ and the Cell max Value.

Here we get used of the sum product equation and the matrix multiplication equation

Explanation:

AX is calculated by the Excel formula MMULT(E3:G5,C3:C5) .

1) Select (H3:H5)
2) type in MMULT ("then you select E3:G5 ","then you select C3:C5") Press enter
3) Then press "Ctrl" + "Shift" + "Enter"

Max value is the value that we need to maximized and you can set max variable $=\mathbf{B 1 1}$.
Then you the value of $\mathbf{1 1}=\mathbf{C} 3 * \mathbf{C 8}+\mathbf{C 4} * \mathbf{C} 9+\mathbf{C} \mathbf{5} * \mathbf{C 1 0}$, or you can set
B11 = sumproduct (C3:C5, C8:C10).

Now we are ready to apply our Solver application:

Go to the Data part and select Solver

Set Objective column:

For the Set objective column, select the cell that you need to maximized:
And of cause you need to Max:

By Changing Variable Cell Column:

Press the red button and select the section that you have defined as variables, hence select C3 to C5 in our case.

Adding in the constraints $\boldsymbol{A} \boldsymbol{X} \leq \boldsymbol{b}$.

For the Subject to the constraints section, press ADD.
Since we need $\boldsymbol{A} \boldsymbol{X} \leq \boldsymbol{b}$

Select (H3:H5) $\leq(k 3: k 5)$, then press OK.
Making sure that the variables are non-negative and telling the solver to use the Simplex methods.

Solving the system:

Press "Solve". Select "keep Solver solution" and press "OK".

More function of the constraints:

When you set the variables as "Integer", the Solver will try to maximize the objective function while keeping the Xs as integer from.

The same logic follows when you set the variables to be binary

